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A little bit of theory… 
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Lorentz Force: 

𝑭 = 𝑞 𝑬 + 𝒗 × 𝑩  

Magnetic rigidity: 

𝐵𝑟 =
𝐾2 + 2𝐾𝐸𝑜
𝑞𝑐

 

𝑭 = 𝑞 𝒗 × 𝑩 

F : force  q : charge  v : charge velocity  B : magnetic field 

K : Beam energy c : speed of light Eo : Particle rest mass 



… a little bit more 
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I 

B 

Biot-Savart law 

 𝑯.𝒅𝒍 = 𝐼 

𝐵

𝜇𝑜
2𝜋𝑟 = 𝐼 

 

𝐵 =
𝐼𝜇𝑜
2𝜋𝑟

 

r 

r : radius   B : magnetic field   mo : vacuum magnetic permeability 



Units 
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SI units Variable Unit 

F Newtons (N) 

q Coulombs (C) 

B Teslas (T) 

I Amperes (A) 

E Joules (J) 

1 T = 10,000 G 

𝜇𝑜 = 4π × 10
−7
𝑇.𝑚

𝐴
 

Charge of 1 electron ~ 1.6x10-19 C 1 eV = 1.6x10-19 J 

(eV) for beams 



Magnitude of Magnetic Fields 
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Value Item 

0.1 - 1.0 pT  human brain magnetic field 

24 µT  strength of magnetic tape near tape head 

31-58 µT  strength of Earth's magnetic field at 0° latitude (on the equator) 

0.5 mT 
 the suggested exposure limit for cardiac pacemakers by American Conference of 
Governmental Industrial Hygienists (ACGIH) 

5 mT  the strength of a typical refrigerator magnet 

0.15 T  the magnetic field strength of a sunspot 

1 T to 2.4 T  coil gap of a typical loudspeaker magnet 

1.25 T  strength of a modern neodymium-iron-boron (Nd2Fe14B) rare earth magnet. 

1.5 T to 3 T  strength of medical magnetic resonance imaging systems in practice, experimentally up to 8 T 

9.4 T  modern high resolution research magnetic resonance imaging system 

11.7 T  field strength of a 500 MHz NMR spectrometer 

16 T  strength used to levitate a frog 

36.2 T  strongest continuous magnetic field produced by non-superconductive resistive magnet 

45 T 
 strongest continuous magnetic field yet produced in a laboratory (Florida State University's 
National High Magnetic Field Laboratory in Tallahassee, USA) 

100.75 T 
 strongest (pulsed) magnetic field yet obtained non-destructively in a laboratory (National 
High Magnetic Field Laboratory, Los Alamos National Laboratory, USA) 

730 T 
 strongest pulsed magnetic field yet obtained in a laboratory, destroying the used equipment, 
but not the laboratory itself (Institute for Solid State Physics, Tokyo) 

2.8 kT 
 strongest (pulsed) magnetic field ever obtained (with explosives) in a laboratory (VNIIEF in 
Sarov, Russia, 1998) 

1 to 100 MT  strength of a neutron star 

0.1 to 100 GT  strength of a magnetar 



Types of magnets 
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• Dipoles 
 

• Quadrupoles 
 

• Sextupoles 
 

• Correctors 
 

• Septa 
 

• Kickers 



  

Optics analogy 1 
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Prism 
Lens 



Optics analogy 2 
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Dipole 

Quadrupole 

Incoming beam 

Low energy 

Sextupole 

Desired focus 

Low energy focus High energy focus 



Dipole 
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The dipole magnet has two poles, a constant field and steers a particle beam.  
Using the right hand rule, the positive dipole steer the rotating beam toward 
the left. 



Dipoles 
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ALBA SR Combined Function Dipole 



Quadrupole 
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The Quadrupole Magnet has four poles. The field varies linearly with the distance from 
the magnet center. It focuses the beam along one plane while defocusing the beam 
along the orthogonal plane.  An F or focusing quadrupole focuses the particle beam 
along the horizontal plane. 



Quadrupole 
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ALBA SR Quadrupole 



Sextupole 
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The Sextupole Magnet has six poles. The field varies quadratically with the distance 
from the magnet center. It’s purpose is to affect the beam at the edges, much like an 
optical lens which corrects chromatic aberration.  An F sextupole will steer the particle 
beam toward the center of the ring. 
Note that the sextupole also steers along the 60 and 120 degree lines. 



Sextupole 

ALBA SR Sextupole 
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Correctors 
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SPEAR3 Corrector 



Current Carrying Septum 
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Eddy-Current Septum 
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Lambertson Septum 
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Kicker magnets 
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The forces on parallel currents is illustrated in the following figure.  The force on 
a charge moving with a given velocity through a magnetic field is expressed with 
the lorentz force: 

Magnetostriction 

𝑭 = 𝑞 𝒗 × 𝑩 
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Magnetostriction 

• Currents with the same charge travelling in the same direction attract. 

 

• Currents with opposite charge travelling in the same direction repel.  

 

• Currents with the same charge travelling in the opposite direction repel. 

 

• Currents with the opposite charge travelling in the opposite direction attract. 
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Introduction to the Mathematical 
Formulation 

• An understanding of magnets is not possible without understanding some 
of the mathematics underpinning the theory of magnetic fields.  The 
development starts from Maxwell’s equation for the three-dimensional 
magnetic fields in the presence of steady currents both in vacuum and in 
permeable material.   
 

• For vacuum and in the absence of current sources, the magnetic fields 
satisfy Laplace’s equation.   
 

• In the presence of current sources (in vacuum and with permeable 
material) the magnetic fields satisfy Poisson’s equation.  Although three 
dimensional fields are introduced, most of the discussion is limited to two 
dimensional fields.   
 
– This restriction is not as limiting as one might imagine since it can be shown 

that the line integral of the three dimensional magnetic fields, when the 
domain of integration includes all regions where the fields are non-zero, 
satisfy the two dimensional differential equations.   
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Maxwell’s Equations 
(in vacuum) 

𝛻. 𝑬 =
𝜌

𝜀𝑜
 

𝛻.𝑩 = 0 

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

𝛻 × 𝑩 = 𝜇𝑜𝑱 + 𝜇𝑜𝜀𝑜 
𝜕𝑬

𝜕𝑡
 

Gauss’s law 

Faraday’s law 

Ampere’s law 

 𝑬.𝑑𝑨 =
𝑄

𝜀𝑜
 

 𝑩.𝑑𝑨  = 0 

 𝑬. 𝑑𝒍 = − 
𝜕𝑩

𝜕𝑡
. 𝑑𝑨 

 𝑩. 𝑑𝒍 = 𝜇𝑜𝑰 + 𝜇𝑜𝜀𝑜 
𝜕𝑬

𝜕𝑡
. 𝑑𝑨 
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Maxwell’s Equations 
(in media) 

𝛻.𝑫 = 𝜌𝑓 

𝛻.𝑩 = 0 

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

𝛻 × 𝑯 = 𝑱𝒇 + 
𝜕𝑫

𝜕𝑡
 

Gauss’s law 

Faraday’s law 

Ampere’s law 

 𝑫.𝑑𝑨 = 𝑄𝑓 

 𝑩.𝑑𝑨  = 0 

 𝑬. 𝑑𝒍 = − 
𝜕𝑩

𝜕𝑡
. 𝑑𝑨 

 𝑯. 𝑑𝒍 = 𝑰𝒇 + 
𝜕𝑫

𝜕𝑡
. 𝑑𝑨 
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Maxwell’s Steady State Magnet Equations 

𝛻.𝑩 = 0 

𝛻 × 𝑩 = 𝜇𝑜𝑱 

𝛻 × 𝑩 = 0 

in the absence of sources 
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The function of a complex variable 
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𝑭 = 𝑨 + 𝑖𝑉 

A : Vector potential 
V : Scalar potential 

𝑩 = 𝜵 × 𝑨 =

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

 𝑩 = −𝜵𝑉 = − 𝒊
𝜕𝑉

𝜕𝑥
+ 𝒋
𝜕𝑉

𝜕𝑦
+ 𝒌
𝜕𝑉

𝜕𝑧
 

𝜵 × 𝑩 = 𝜵 × 𝜵 × 𝑨 = 𝜵 𝜵. 𝑨 − 𝜵𝟐𝑨 = 0 

0 (Coulomb gauge) 

𝜵𝟐𝑨 = 0 

A  satisfies the Laplace equation! 

𝜵. 𝑩 = 𝜵. −𝜵𝑉 = −𝜵𝟐𝑉 = 0 𝜵𝟐𝑉 = 𝟎 

V  also satisfies the Laplace equation! 

The complex function 𝑭 = 𝑨 + 𝑖𝑉 must also satisfy the Laplace equation 𝜵𝟐𝑭 = 0 



The Two-Dimensional Fields 
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𝛻 × 𝑩 = 𝜇𝑜𝑱 

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

= 𝒊
𝜕𝐵𝑧

𝜕𝑦
−
𝜕𝐵𝑦

𝜕𝑧
+ 𝒋

𝜕𝐵𝑥

𝜕𝑧
−
𝜕𝐵𝑧

𝜕𝑥
+ 𝒌

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥

𝜕𝑦
 

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦
= 𝜇𝑜𝐽𝑧 



Fields from the two-dimensional 
Function of a complex variable 
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𝕫 = 𝑥 + 𝑖𝑦 

𝑭 𝕫 = 𝑨 + 𝑖𝑉 

𝐶𝑎𝑢𝑐ℎ𝑦 − 𝑅𝑖𝑒𝑚𝑎𝑛𝑛: 

𝜕𝑨

𝜕𝑦
= −
𝜕𝑉

𝜕𝑥
 

𝜕𝑨

𝜕𝑥
=
𝜕𝑉

𝜕𝑦
 

𝑭′ 𝕫 =
𝜕𝐹(𝕫)

𝜕𝕫
=
𝜕𝑨 + 𝑖𝜕𝑉

𝜕𝑥 + 𝑖𝜕𝑥
 

𝑭′ 𝕫 =

𝜕𝑨
𝜕𝑥
+ 𝑖
𝜕𝑉
𝜕𝑥

𝜕𝑥
𝜕𝑥
+ 𝑖
𝜕𝑦
𝜕𝑥

 𝑭′ 𝕫 =

𝜕𝑨
𝜕𝑦
+ 𝑖
𝜕𝑉
𝜕𝑦

𝜕𝑥
𝜕𝑦
+ 𝑖
𝜕𝑦
𝜕𝑦

 

𝑩
∗
= 𝐵𝑥 − 𝑖𝐵𝑦 = 𝑖𝑭′ 𝕫  

𝑩
∗
= 𝐵𝑥 − 𝑖𝐵𝑦 = 𝑖

𝜕𝑨

𝜕𝑥
−
𝜕𝑉

𝜕𝑥
 

𝑭′ 𝕫 =
𝜕𝑨

𝜕𝑥
+ 𝑖
𝜕𝑉

𝜕𝑥
 𝑭′ 𝕫 = −𝑖

𝜕𝑨

𝜕𝑦
+
𝜕𝑉

𝜕𝑦
 

𝑩
∗
= 𝐵𝑥 − 𝑖𝐵𝑦 =

𝜕𝑨

𝜕𝑦
+ 𝑖
𝜕𝑉

𝜕𝑦
 

𝐵𝑥 = −
𝜕𝑉

𝜕𝑥
 

𝐵𝑥 =
𝜕𝑨

𝜕𝑦
 

𝐵𝑦 = −
𝜕𝑨

𝜕𝑥
 

𝐵𝑦 = −
𝜕𝑉

𝜕𝑦
 



Solution to Laplace’s equation 
(2D) 
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𝜵𝟐𝑭 =
𝜕2𝐹

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑦2
= 0 

𝜕𝐹

𝜕𝑥
=
𝑑𝐹

𝑑𝕫

𝜕𝕫

𝜕𝑥
=
𝑑𝐹

𝑑𝕫
 

𝜕2𝐹

𝜕𝑥2
=
𝜕

𝜕𝑥

𝑑𝐹

𝑑𝕫
=
𝑑2𝐹

𝑑𝕫2
𝜕𝕫

𝜕𝑥
=
𝑑2𝐹

𝑑𝕫2
 

𝜕𝐹

𝜕𝑦
=
𝑑𝐹

𝑑𝕫

𝜕𝕫

𝜕𝑦
=
𝑑𝐹

𝑑𝕫
𝑖 

𝜕2𝐹

𝜕𝑦2
=
𝜕

𝜕𝑦

𝑑𝐹

𝑑𝕫
𝑖 =
𝑑2𝐹

𝑑𝕫2
𝑖
𝜕𝕫

𝜕𝑦
= −
𝑑2𝐹

𝑑𝕫2
 



Orthogonal Analog Model 
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The name of the method for picturing the field in a magnet is called the Orthogonal Analog 

Model by Klaus Halbach.  This concept is presented early in the lecture in order to 

facilitate visualization of the magnetic field and to aid in the visualization of the vector and 

scalar potentials. 

• Flow Lines go from the + to - Coils. 
• Flux Lines are ortho-normal to the Flow Lines. 
• Iron Surfaces are impervious to Flow Lines. 



Orthogonal Analog Model 
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Current Carrying Septum 
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Multipoles Expansion 
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𝕫 = 𝑥 + 𝑖𝑦 

𝐹 𝕫 = 𝐴 + 𝑖𝑉 =  𝐶𝑛𝕫
𝑛

∞

𝑛=1

 

where n is the order of the multipole 

The ideal pole contour can be computed using the scalar equipotential.   
 
The field shape can be computed using the vector equipotential. 



Example 1: Dipole (n=1) 
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𝐴 + 𝑖𝑉 = 𝐶1𝕫
1 = 𝐶1(𝑥 + 𝑖𝑦) 

𝑥 =
𝐴

𝐶1
 

𝑦 =
𝑉

𝐶1
 



Dipole (n=1) 
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Example 2: Quadrupole (n=2) 
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𝐴 + 𝑖𝑉 = 𝐶2𝕫
2 = 𝐶2 𝑥 + 𝑖𝑦

2 = 𝐶2 𝑥
2− 𝑦2+ 𝑖2𝑥𝑦  

𝑥2− 𝑦2 =
𝐴

𝐶2
 

𝑥𝑦 =
𝑉

2𝐶2
 



Quadrupole 
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• For the sextupole case, the function of a 
complex variable is written in polar form. 
– This case is presented to illustrate that both 

polar and Cartesian coordinates can be used in 
the computation.     

 



3sin3cos
3

333

izC

ezCCzF i





3cos
3

zCA 

3sin
3

zCV 

Example 3: Sextupole (n=3) 

𝕫 = 𝑥 + 𝑖𝑦 = 𝕫 𝑒−𝑖𝜃 
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











sin
3cos

sin

cos
3cos

cos

3cos

3

1

3

1

3

1































C

A
zy

C

A
zx

C

A
z

ntialVectorPote

ntialVectorPote

ntialVectorPote













sin
3sin

sin

cos
3sin

cos

3sin

3

1

3

1

3

1































C

V
zy

C

V
zx

C

V
z

ntialScalarPote

ntialScalarPote

tialSclarPoten

Scalar Potentials 

Vector Potentials 
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Sextupole Equipotentials 
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Real and Skew Magnets 
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• Magnets are described as real when the magnetic fields are vertical along the 
horizontal  centerline : 

Bx = 0 and By ≠ 0 for y=0 

• Real magnets are characterized by C = real. 
 

• Magnets are described as skew when the field are horizontal along the horizontal 
centerline: 

Bx ≠ 0 and By = 0 for y=0 

• Skew magnets are characterized by C = imaginary. 



Dipole Example 
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Real 

Skew 



Quadrupole Example 
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Real 

Skew 



Ideal pole shapes 
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𝑥 =
𝑨

𝐶1
 

𝐵𝑦 = −
𝜕𝑨

𝜕𝑥
      𝐵𝑦 = −

𝜕𝑉

𝜕𝑦
 

𝑦 = ℎ 

Dipole 

h = half gap 

𝐵𝑦 = 𝐵𝑜 

𝑉 = − 𝐵𝑜𝑑𝑦 = − 𝐵𝑜𝑦 

𝑉 𝑥 = 0, 𝑦 = ℎ = −𝐵𝑜ℎ 

−𝐵𝑜ℎ = −𝐵𝑜𝑦 



Ideal pole shapes 
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𝑥2− 𝑦2 =
𝑨

𝐶2
 

Quadrupole 

𝑦 =
ℎ2

2𝑥
 Hyperbola! 

Sextupole 

𝕫 = 𝑥2 + 𝑦2 =
𝑨

𝐶3𝑐𝑜𝑠3𝜃

1
3

 

𝕫 = 𝑥2 + 𝑦2 =
ℎ

𝑠𝑖𝑛3𝜃
3  

𝐵𝑦 = 𝐵
′. 𝑥  @ 𝑦 = 0 

𝐵𝑦 = 𝐵
′′. 𝑥2  @ 𝑦 = 0  

𝑉 = − (𝐵′. 𝑥)𝑑𝑦 = − 𝐵′. 𝑥𝑦 = −𝐵′. 𝑟2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 

𝑉 𝑟 = ℎ, 𝜃 = 𝜋/4 = −
𝐵′ℎ2

2
 

−
𝐵′ℎ2

2
= −𝐵′𝑥𝑦 

𝐵𝑦 = −
𝜕𝑨

𝜕𝑥
      𝐵𝑦 = −

𝜕𝑉

𝜕𝑦
 



• Using the concept of the magnetic potentials, the ideal 
pole contour can be determined for a desired field.   

 

• Combined Magnet Example 

– The desired gradient magnet field requires a field at a 
point and a linear gradient.   

– Given: 

 A central field and gradient. 

 The magnet half gap, h, at the magnet axis.  

 

– What is the ideal pole contour?   

Complex Extrapolation 
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xBBBy '0 The desired field is;  

The scalar potential 
satisfies the relation;  

y

V
By






  xyByBdyxBBV '' 00  Therefore;   

   hyx ,0, For  on the pole surface,  

  hBhBhBVpole 00 0' 

Therefore, the equation 
for the pole is,  hBVxyByB pole 00 ' 

xBB

hB
y

'0

0


or solving for y,  
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xBB

hB
y

'0

0




'

0

B

B
x Hyperbola with asymptote at,  
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Section Summary 
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• We learned about the different kinds of magnets and their functions. 
 

𝑭 𝕫 = 𝑨 + 𝑖𝑉 =  𝐶𝑛𝕫
𝑛

∞

𝑛=1

 

 
• The ideal pole contour can be computed using the scalar equipotential.   

 
• The field shape can be computed using the vector equipotential. 

 

𝐵𝑥 = −
𝜕𝑉
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𝐵𝑦 = −
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Next… 
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• Multipoles 
 

• Pole tip design 
 

• Conformal mapping 


